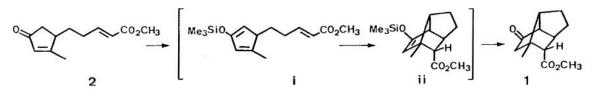
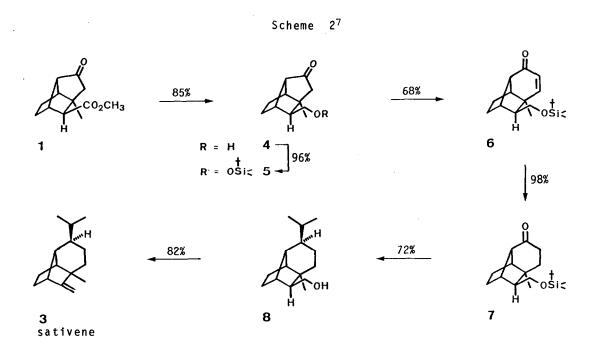
A STEREOSELECTIVE TOTAL SYNTHESIS OF (±)-SATIVENE


Roger L. Snowden

Firmenich SA, Research Laboratories, 1211 Geneva 8, Switzerland


Abstract: (±)-Sativene (3) is stereoselectively synthesised from tricyclic ketoester $\underline{1}$ in 32% overall yield.

The formation, in 94% yield, of the tricyclic ketoester $\underline{1}$ from the (3-alkenyl)-cyclopentenone $\underline{2}$ has been described¹. This reaction is believed to proceed *via* the regio- and stereospecific intramolecular [4+2] cycloaddition of the silylenol ether (i) formed *in situ*; the cycloadduct, tricyclic silylenol ether (ii), unstable under the conditions of its formation, then leads directly to $\underline{1}$, see Scheme 1. The present letter describes an application of this novel transformation to a total synthesis of the racemate of the naturally occurring sesquiterpene sativene ($\underline{3}$)², see Scheme 2.

Scheme

Protection of the ketone group in <u>1</u> by ketalisation (HOCH₂CH₂OH/H⁺), reduction of the ester functionality (LiAlH₄/Et₂0) and deprotection (H₃0⁺) gave hydroxyketone <u>4</u> (mp 137 - 138⁰) in 85% yield (from <u>2</u>), which was converted to its *t*-butyldimethylsilyl ether <u>5</u> (mp 42 - 43⁰, 96%). Regiospecific one-carbon ring expansion of <u>5</u> was now effected by carbene addition³ (Zn-Cu couple/CH₂I₂/ Et₂0/reflux) to the trimethylsilylenol ether of <u>5</u> (prepared under kinetically-controlled conditions: LDA/THF/-78⁰ then Me₃SiCl), followed by regiospecific opening of the resulting cyclopropane ring⁴ (FeCl₃/DMF-pyridine/0 - 20⁰, 2 h) to provide tricyclic ketone <u>6</u> (mp 74 - 75⁰) in 68% yield. Hydrogenation (5% Pd-C/H₂ (1 atm)/EtOH) smoothly gave ketone <u>7</u> (mp 57 - 58⁰, 98%) which was transformed to the primary alcohol <u>8</u> in 72% yield, in three steps: Wittig reaction⁵ (KH/Me₂CHPPh₃I/ toluene-DMSO (9:1)/60⁰, 70 h, 79%), hydrogenation (Pt0₂/H₂(1 atm)/AcOH-EtOAc (3:1)) and silyl ether cleavage (H₃0⁺). Finally, the formation and subsequent elimination of the *o*-nitrophenylselenoxide⁶ of <u>8</u> (Bu₃P/o-0₂NArSeCN/pyridine-THF then 30% H₂0₂) furnished ([±])-sativene (<u>3</u>) in 82% yield. Structural confirmation was provided by analysis of the spectral data (IR, ¹H- and ¹³C-NMR, MS) which were identical to those of synthetic (+)-sativene.

Acknowledgement. The author thanks Prof. W. Oppolzer for kindly providing the spectra of synthetic (+)-sativene.

References and Notes

- 1. See preceding paper.
- For previous syntheses, see J.E. McMurry, J. Am. Chem. Soc., 90, 6821 (1968); J.E. McMurry, <u>Tetrahedron Lett.</u>, 3731 (1970); G.L. Hodgson, D.F. MacSweeney and T. Money, <u>J. Chem. Soc. Perkin I</u>, 2113 (1973); C.R. Eck, G.L. Hodgson, D.F. MacSweeney, R.W. Mills and T. Money, *ibid.*, 1938 (1974); E. Piers, M.B. Geraghty, R.D. Smillie and M. Soucy, <u>Can. J. Chem.</u>, <u>53</u>, 2849 (1975); P. Bakuzis, O.O.S. Campos and M.L.F. Bakuzis, <u>J. Org. Chem.</u>, <u>41</u>, 3261 (1976); M. Yanagiya, K. Kaneko, T. Kaji and T. Matsumoto, <u>Tetrahedron Lett.</u>, 1761 (1979).
- R.J. Rawson and I.T. Harrison, <u>J. Org. Chem.</u>, <u>35</u>, 2057 (1970); S. Murai, T. Aya and N. Sonoda, *ibid.*, 38, 4354 (1973).
- 4. Y. Ito, S. Fujii and T. Saegusa, J. Org. Chem., 41, 2073 (1976).
- 5. Use of other Wittig conditions only gave traces of product.
- K.B. Sharpless and M.W. Young, <u>J. Org. Chem.</u>, <u>40</u>, 947 (1975); P.A. Grieco, S. Gilman and M. Nishizawa, *ibid.*, 41, 1485 (1976).
- 7. All compounds give spectral data (IR, 1 H- and 13 C-NMR, MS) in accordance with their structures.

(Received in France 14 October 1980)